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Morphology from the maximum entropy principle: Domains in a phase ordering system
and a crack pattern in broken glass
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The maximum entropy principle is applied to study the morphology of a phase ordering two-dimensional
system below the critical point. The distribution of domain afeia a function of ratio of the area to contour
lengthL, R=A/L(A), and is given by exp{AR*) with exponentu = 2, which follows from the Lifshitz-Cahn-

Allen theory.A andL are linked through the relatidn~A”. We find two types of domain in the system: large
of elongated shapev0.88) and small of circular shape € 0.5). A crack pattern in broken glass belongs to
the same morphology class with=1 andv=0.72.
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One of the main problems in statistical mechanics is thavhere ¢ is the scalar order parametd, is the Landau-
formulation of some general principles that govern the evoGinzburg free energy functional,
lution of systems out of equilibrium. Here we show that for a 1
system undergoing a phase transition one can use the maxi- :f (_ 2
mum entropy principlg¢1] (MEP) to determine its morphol- FL4] dr 2 VI+T(60) ), @
ogy at each instant of time. As far as we know this is the first _ ) P )
application of this principle to the kinetics of phase transi-and f(¢) = — ¢“/2+ ¢"/4 is the bulk free energy. Equation
tions [2]. Moreover, aquantitativeanalysis of system mor- (1) has been solved on square lattices of 8522, 1024

phology allows us to determine the kinetic pathways anngf< 1024, and 20482048 grid points with no apparent

which the evolution of the system proceeds during the phas(é.hange of the result@xcept for very _Iong times wher_e finite
. . . Size effects become appargrihe initial value of the fieldp
transition. In order to illustrate these ideas we study a sym-

metric two-dimensiona(2D) system of the scalar noncon- was chosen at each point of the lattice from a uniform dis-
Y tribution on[—0.1,+0.1] with zero mean. In order to check

served order parameter. Despite the fact that this simple Sygse regyits for numerical artifacts we have varied the mesh
tem has been studied for almost 40 y&a#s surprisingly, its g6 petweemx=0.5 and 2 and used four-and eight-point
morphology has not been determingdantitativelyso far  gn5 0ximations for the Laplacian. We note that the statistical
[2,4]. Although we get the morphology of this system from properties of the system, such as correlation function, size
the maximum entropy principle we find that the dynamics ofang shapes of the domains, growth laws, etc., do not depend
the system follows a kinetic pathway along which the dissi-on the initial distribution of the fieldb after a few initial time
pation (or production of entropyis continuously reduced. steps of the evolution.

_Cellular structures in 2D_ are known in many areas of The initial pattern given byp can be represented by the
sciencdg5]. Whether we consider bee_ honeycomb, soap fqa@/_ domains defined by the sign @f The system is sym-
(or froth) [6-8], defect condensation of charge density metric under the change of sigh— — ¢ and therefore the
waves[9], territory of fire antg10], administrative divisions jnterface betweent/— domains is defined byb(x,y) =0.
[11,13, superclusters of galaxiéarge scale structure of the gjnce the system is simulated on a lattice the location of the
universg [13], 2D sections of polycrystalline materials, jnterface is obtained by linear interpolation ¢between the
chemical patterns on surfaces, or crack structure in ceramigggtice points. On Fig. 1 we show a typical snapshot-ef—)

[14], we find charact_eristic morphological patterns..Here WE(plack/white domains in the late stage of the system evolu-
present a comparative study of a crack pattern in brokegs \ith sharp interfaces between the domains. The coars-
glass obtained in our experimental studies and the doma‘@ning of the systerincrease of the characteristic length

pattern of phase ordering systems in 2D obtained in our cOMsca1g occurs via a change of shape of the irregular domains
puter simulations. We find that these two different systems,q the disappearance of smaller circular domains.

belong to the same morphological class. We are not aware of a; the very beginning of the evolution the-/—) domains
any previous studies of the morphology of the crack patternre yery small. The dynamics is diffusive and mainly driven
in broken glass. _ by the bulk free energyi(¢). After a few time steps the
_Computer simulationsThe evolution of the 2D system o qer parametefinitially close to zerd attains its bulk equi-
with a scalar nonconserved order parameter below the critiy i m value (saturation inside the domains. In the process
ce_ll point foIIows_; the dimensionless time dependent La”daumany small domains join together, forming larger domains
Ginzburg equatioh2,4]: with highly irregular shapes. Once the order parameter is
saturated the character of the evolution changes from bulk
driven to interface driven. The domains change their size and
dp(r,t) __ oF[ 4] 1) shapes by the movement of the interface. On the basis of Eq.
ot o¢p (1) Lifshitz and Allen and Cahh3] showed that the interface
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FIG. 2. The scaling relation between the interface lerigdnd
the domain(Fig. 1) areaA during the process of phase ordering.
Equationg3) and(4) are given by the dashed lines. On this plot we
have put the results obtained for about 330 000 domains and three
different times {=400,500,1100). The master curve consists of
a two straight line§Egs.(3) and(4)], indicating two types of domain

) in the system.
FIG. 1. Snapshot of the system during the late stages of evolu-

tion. The black domains correspond #{x,y)>0 inside the do-
main and the white domains ¥(x,y) <0. The domain interface is
given by ¢(x,y)=0.

elongated with contour length proportior{abughly) to their
area (Y088~ A) and circular domains for which®>~A. The
evolution follows a path along which the elongated domains
. Lo : change continuously into circular domaiisgs. 1 and 2 In
moves with velocityv=—H, whereH is the local mean this way dissipation is reduced. In order to see it let us con-

curvatu.re. Assuming that the mean curvature is inverselyéider the local energy change per unit time and unit length of
proportional to the size of the domaifis~1/R(t) the LCA the domain interface. This quantity is proportionabto[2],

theory predicts the growth laR(t) =vt~t"% confirmed by  \ypere the local velocity of the interface= — H. Integrating
comrp])uter S|mul?jt|<_)ns |fn thellate ;’t?jge ‘_’g e_voluli(‘hchj]. v? over the interface length of a domain gives the dissipation
The area and interface en.gt Istri utuon!n order to er domain. For a circular domain this dissipation is propor-
study the shapes of the doma_lns_ we have trlangulate_d the nal to 1L (sinceH~1/L), while for the elongated domain
and computed for each domain its aeand length of in- it is 1/L%4 Therefore the change of shape of the domains

ter{agetlﬁ at each t|me|step offttr?e_ eVOIUt'Ona l_\letxtfwe clom— uring this evolution follows a kinetic pathway along which
puted the average values of their area and interface length,, dissipation is continuously reduced.

Aafl) andL,(1), as a function of time. We found that the Next we have determined the distribution of sizes of the

shape of the domains exhibits the following scaling relation:domains,p(A,t). Following the conjecture made by Jaynes
L/IL (1)~ (AJALLD)", ) [1] we assumed that the distribution can be obtained from the
maximum entropy principle with some additional con-
where the exponentdepends on whether the domain afea straints. We have found that the entrdgdy
is above or below the averadg,(t):

0.50+0.01 if A<Ay(t), S(t)= —f dA p(A,t)In p(A,t) (5)

- 4
"710.88£0.02 if A>ALL). @

. . L N is maximized at each instant of timesubject to the condition
This scaling relation is shown in Fig. 2, where we have taken

all the domain areas and interface length for three different

times ¢=400,500,1100) and more than 330 000 domains. It f dA p(A,t)(A/L)*=fixed, (6)

is remarkable that all the domains for all times fall onto a

single master curve, showing a high degree of regularity in

the morphology of the system. In principle, for a highly ir- where =2 and the dependence bfon A, which reflects

regular (chaotig morphology we would see instead of a the system dynamics, is given by E8) and (4). The ex-

single curve many points scattered all over the diagram. Thigonent u can be deduced from the LCA theory. Because

equation also shows that the system undergoing the pha#dL~R(t) (domain siz¢ we conclude that the conditioi)

ordering kinetics exhibits scaling at the level of the shapes ofets the characteristic time~[R(t)]*~(A/L)* propor-

the domains. This means that the shapes of the domains @onal to the time needed to close the domain of $%¢).

earlier times look statistically similar to the shapes at latefFrom the LCA theory we have~R? and consequently

times, apart from the global change of the average area and?2. Similarly, for other systems undergoing phase transi-

interface length. tions the exponent can be found from the growth of the
It follows from Fig. 2 and Eq(4) that in the late stage average domain sizes. In this sense our analysis is robust and

regime we find in the system two types of domain: large andot restricted to the specific system under study.
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FIG. 3. The distribution function for the domain area in the late F|G. 5. The scaling relation between the contour lergdf the
stage regime of the kinetics of a 2D system. It is shown in thegomain boundaries and the arador the crack pattern in broken
scaled formp(A,t) ~exf —a(x/y)“] with u=2x=A/A,(t) andy  glass(Fig. 4. Equation(3) with »=0.72 is given by the solid line.
=L/L,(t) for three different timegsee Fig. 2 Equation(8) is
repr_esented _by the solid line. This fit strongly supports the MEPRyivial. For example, a possible choice pf(L,t) in Eq. (5)
conjecture with the entropp(A,t) [Eq. (5)]. The distribution was  \y6y1d |ead to disagreement with our computer simulations.
obtained for about 330 000 domains. The analysis presented here for the kinetics of phase tran-

o ) sitions leads additionally to the definition of the 2D morphol-

From the maximization of(t) [Eq. (5] subject to the o4y class which can be characterized by two exponents

constraint(6) we find (u,v). Equations(5) and (6) form the basis of the general
_ u principle which governs the form of the distribution function
P(AH)=C(exd — A (D (A/L)¥]. (") while Egs.(3) and (4) are characteristic for a given system.

) i . i o There are other systems that belong to this class. One is the
Using the scaling principle we find the distribution in the ¢ 501 pattern in broken glass, discussed below, and another is
rescaled form the parcel division in towns mentioned in the conclusions.

- N u We are not aware of previous studies of these systems.
P()=C* expl —\* (x/y)“], ®) Crack pattern in a broken glas3he size of the hardened
lass used in our experiment was approximately <1 Time
wherex=A/Aq(1), y=L/La(t), C* andA™ are constants glass was broken ang a crack patter%pemel(géxgiy@. The
independent of time, ang =2. Equation(8) is satisfied in oy neriment was repeated with many samples of glass and for
the late stage regime as shown in Fig. 3, where the dlstnbufne morphological analysis we have used abodtgi6ces of
tion p(x) obtained from the simulations is plotted. This gives p.oxen glass. In order to measure the area and boundary
a strong support to the application of maximum entropy pringngih of the glass pieces we put the broken glass on a trans-
c_iple to the kinetics of the phase Fransition. Other distribu-parency projector and made a photo of its image on a wall.
tions such agy(L,t) can be obtained fronp(A,t) by a  Next we put the photo on a HP scanner and made an image
change of variables, i.ep;(L,t)=p(A(L),)dA(L)/dL. We i, 3pG format. Later, it was converted into a PPM format
note that the choice of the distribution in Ep) is not  gch that it allowed us to make a full analysis of the domains
formed in this crack pattern. In Fig. 5 we show=L/L,,
7 versusx=A/A,, and find the same algebraic relation as in
pLem, Eqg. (3) with »=0.72+0.02. The area distributiop(A) is
” obtained from the MEP principle with the constrai6j. We

I[P(A/A, )]

10 —
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FIG. 6. The distribution function for the domain area in the
crack pattern shown in Fig. 4. We find(A) ~exd — B(/y)*] (n

FIG. 4. Image of broken glags fragmenkwith a characteristic =1) and sincey~x" for all pieces of glass withh=0.72 we plot
crack pattern. p(A) in the rescaled form exp(8x™").
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find p(A) for a broken glass pattern in the form of E§)  of 2D system morphology in phase ordering kinetics and the
with u=1. Condition(6) with u=1 expresses simply the two exponents and u can be used for its quantitative char-
fact that the characteristic domain sigg,, of the crack acterization. For systems undergoing phase transitions the
pattern is fixed. Since the exponenin the relationy~x"is  constraint is imposed on the characteristic time of evolution
independent of the domain size, we hap€A)=p(Xx)  and therefore the exponentshould follow from the relation
~exf — B(x/y)“]~exp(~Bx""). In Fig. 6 we show the area petween the domain size and time. Unfortunately, not all 2D
distribution plotted as a function ok*~”. This analysis patterns follow such characterization. The soap froth show a
shows that the crack pattern in broken glass belongs to thgifferent distribution ofp(A) since there are strong con-
same morphology class as the domain pattern in a 2D syste8iraints imposed on their domain shdpeg., a linear relation
undergoing phase ordering. between the surface area and the number of sides of the cell

Conclusions Analysis based on the morphology of the 51y \vhich do not applv in the cases studied here
system allows a detailed study of the kinetics of phase tran[- ). PRY '

sitions. The phase transition as observed in time should fol- This work was supported by the KBN through Grant Nos.
low a kinetic pathway in the direction of reduced dissipation.2P03B12516 and 5P03B09421.
The maximum entropy principle is applicable to the analysis

[1] E. T. Jaynes, Phys. Ret06, 620(1957; 108 171 (1957. [9] H. H. Weitering, J. M. Carpinelli, A. P. Melechko, J. D. Zhang,
[2] A. J. Bray, Adv. Phys43, 357 (1994. M. Bartkowiak, and E. W. Plummer, Scienc285 2107
[3] S. M. Allen and J. W. Cahn, Acta Metal27, 1085(1979; I. (1999.

M. Lifshitz, Zh. Eksp. Teor. Fiz42, 1354(1962. [10] E. S. Adams, Ecology9, 1125(1998.
[4] G. Brown, P. A. Rikvold, M. Sutton, and M. Grant, Phys. Rev. [11] G. L. Cae and R. Delannay, J. Phys3| 1777(1993.

E 56, 6601(1997). [12] L. Glass and W. R. Tobler, Natu&ondon 233 67 (1971J.
[5] D. Weaire and N. Rivier, Contemp. Phy&b, 59 (1984). [13] P. Coles, NaturéLondon 346, 446 (1990.

[6] J. Stavans and J. A. Glazier, Phys. Rev. L&®.1318(1989. [14] W. Korneta, S. K. Mendiratta, and J. Menteiro, Phys. Rev. E
[7] A. Hasmy, R. Paredes, O. Sonneville-Aubrun, B. Cabane, and 57, 3142(1998.

R. Botet, Phys. Rev. LetB2, 3368(1999. [15] M. Fiatkowski, A. Aksimentiev, and R. Holyst, Phys. Rev.
[8] A. A. Kader and J. C. Earnshaw, Phys. Rev. L&®, 2610 Lett. 86, 240(2001); G. Brown and P. A. Rikvold, Phys. Rev.
(1999. E 65, 036137(2002.

057105-4



