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Morphology from the maximum entropy principle: Domains in a phase ordering system
and a crack pattern in broken glass
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~Received 26 June 2001; published 22 May 2002!

The maximum entropy principle is applied to study the morphology of a phase ordering two-dimensional
system below the critical point. The distribution of domain areaA is a function of ratio of the area to contour
lengthL, R5A/L(A), and is given by exp(2lRm) with exponentm52, which follows from the Lifshitz-Cahn-
Allen theory.A andL are linked through the relationL;An. We find two types of domain in the system: large
of elongated shape (n50.88) and small of circular shape (n50.5). A crack pattern in broken glass belongs to
the same morphology class withm51 andn50.72.

DOI: 10.1103/PhysRevE.65.057105 PACS number~s!: 64.60.Cn, 68.55.Jk, 75.40.Gb, 75.40.Mg
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One of the main problems in statistical mechanics is
formulation of some general principles that govern the e
lution of systems out of equilibrium. Here we show that fo
system undergoing a phase transition one can use the m
mum entropy principle@1# ~MEP! to determine its morphol-
ogy at each instant of time. As far as we know this is the fi
application of this principle to the kinetics of phase tran
tions @2#. Moreover, aquantitativeanalysis of system mor
phology allows us to determine the kinetic pathways alo
which the evolution of the system proceeds during the ph
transition. In order to illustrate these ideas we study a sy
metric two-dimensional~2D! system of the scalar noncon
served order parameter. Despite the fact that this simple
tem has been studied for almost 40 years@3#, surprisingly, its
morphology has not been determinedquantitativelyso far
@2,4#. Although we get the morphology of this system fro
the maximum entropy principle we find that the dynamics
the system follows a kinetic pathway along which the dis
pation ~or production of entropy! is continuously reduced.

Cellular structures in 2D are known in many areas
science@5#. Whether we consider bee honeycomb, soap fo
~or froth! @6–8#, defect condensation of charge dens
waves@9#, territory of fire ants@10#, administrative divisions
@11,12#, superclusters of galaxies~large scale structure of th
universe! @13#, 2D sections of polycrystalline material
chemical patterns on surfaces, or crack structure in ceram
@14#, we find characteristic morphological patterns. Here
present a comparative study of a crack pattern in bro
glass obtained in our experimental studies and the dom
pattern of phase ordering systems in 2D obtained in our c
puter simulations. We find that these two different syste
belong to the same morphological class. We are not awar
any previous studies of the morphology of the crack patt
in broken glass.

Computer simulations. The evolution of the 2D system
with a scalar nonconserved order parameter below the c
cal point follows the dimensionless time dependent Land
Ginzburg equation@2,4#:

]f~r ,t !

]t
52

dF@f#

df
, ~1!
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where f is the scalar order parameter,F is the Landau-
Ginzburg free energy functional,

F@f#5E dr S 1

2
u“f~r !u21 f „f~r !…D , ~2!

and f (f)52f2/21f4/4 is the bulk free energy. Equatio
~1! has been solved on square lattices of 5123512, 1024
31024, and 204832048 grid points with no apparen
change of the results~except for very long times where finit
size effects become apparent!. The initial value of the fieldf
was chosen at each point of the lattice from a uniform d
tribution on @20.1,10.1# with zero mean. In order to chec
the results for numerical artifacts we have varied the m
size betweenDx50.5 and 2 and used four-and eight-poi
approximations for the Laplacian. We note that the statist
properties of the system, such as correlation function, s
and shapes of the domains, growth laws, etc., do not dep
on the initial distribution of the fieldf after a few initial time
steps of the evolution.

The initial pattern given byf can be represented by th
1/2 domains defined by the sign off. The system is sym-
metric under the change of signf→2f and therefore the
interface between1/2 domains is defined byf(x,y)50.
Since the system is simulated on a lattice the location of
interface is obtained by linear interpolation off between the
lattice points. On Fig. 1 we show a typical snapshot of~1/2!
~black/white! domains in the late stage of the system evo
tion with sharp interfaces between the domains. The co
ening of the system~increase of the characteristic leng
scale! occurs via a change of shape of the irregular doma
and the disappearance of smaller circular domains.

At the very beginning of the evolution the~1/2! domains
are very small. The dynamics is diffusive and mainly driv
by the bulk free energyf (f). After a few time steps the
order parameter~initially close to zero! attains its bulk equi-
librium value~saturation! inside the domains. In the proces
many small domains join together, forming larger doma
with highly irregular shapes. Once the order paramete
saturated the character of the evolution changes from b
driven to interface driven. The domains change their size
shapes by the movement of the interface. On the basis of
~1! Lifshitz and Allen and Cahn@3# showed that the interface
©2002 The American Physical Society05-1
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moves with velocityv52H, where H is the local mean
curvature. Assuming that the mean curvature is invers
proportional to the size of the domainsH;1/R(t) the LCA
theory predicts the growth lawR(t)5vt;t1/2, confirmed by
computer simulations in the late stage of evolution@15#.

The area and interface length distribution. In order to
study the shapes of the domains we have triangulated t
and computed for each domain its areaA and length of in-
terfaceL at each time step of the evolution. Next we com
puted the average values of their area and interface le
Aav(t) andLav(t), as a function of time. We found that th
shape of the domains exhibits the following scaling relati

L/Lav~ t !;„A/Aav~ t !…n, ~3!

where the exponentn depends on whether the domain areaA
is above or below the averageAav(t):

n5H 0.5060.01 if A,Aav~ t !,

0.8860.02 if A.Aav~ t !.
~4!

This scaling relation is shown in Fig. 2, where we have tak
all the domain areas and interface length for three differ
times (t5400,500,1100) and more than 330 000 domains
is remarkable that all the domains for all times fall onto
single master curve, showing a high degree of regularity
the morphology of the system. In principle, for a highly
regular ~chaotic! morphology we would see instead of
single curve many points scattered all over the diagram. T
equation also shows that the system undergoing the p
ordering kinetics exhibits scaling at the level of the shape
the domains. This means that the shapes of the domain
earlier times look statistically similar to the shapes at la
times, apart from the global change of the average area
interface length.

It follows from Fig. 2 and Eq.~4! that in the late stage
regime we find in the system two types of domain: large a

FIG. 1. Snapshot of the system during the late stages of ev
tion. The black domains correspond tof(x,y).0 inside the do-
main and the white domains tof(x,y),0. The domain interface is
given byf(x,y)50.
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elongated with contour length proportional~roughly! to their
area (L1/0.88;A) and circular domains for whichL2;A. The
evolution follows a path along which the elongated doma
change continuously into circular domains~Figs. 1 and 2!. In
this way dissipation is reduced. In order to see it let us c
sider the local energy change per unit time and unit length
the domain interface. This quantity is proportional tov2 @2#,
where the local velocity of the interfacev52H. Integrating
v2 over the interface length of a domain gives the dissipat
per domain. For a circular domain this dissipation is prop
tional to 1/L ~sinceH;1/L!, while for the elongated domain
it is 1/L0.14. Therefore the change of shape of the doma
during this evolution follows a kinetic pathway along whic
the dissipation is continuously reduced.

Next we have determined the distribution of sizes of t
domains,p(A,t). Following the conjecture made by Jayn
@1# we assumed that the distribution can be obtained from
maximum entropy principle with some additional co
straints. We have found that the entropy@1#

S~ t !52E dA p~A,t !ln p~A,t ! ~5!

is maximized at each instant of timet subject to the condition

E dA p~A,t !~A/L !m5fixed, ~6!

wherem52 and the dependence ofL on A, which reflects
the system dynamics, is given by Eqs.~3! and ~4!. The ex-
ponent m can be deduced from the LCA theory. Becau
A/L;R(t) ~domain size! we conclude that the condition~6!
sets the characteristic timet;@R(t)#m;(A/L)m propor-
tional to the time needed to close the domain of sizeR(t).
From the LCA theory we havet;R2 and consequentlym
52. Similarly, for other systems undergoing phase tran
tions the exponentm can be found from the growth of th
average domain sizes. In this sense our analysis is robus
not restricted to the specific system under study.

u-

FIG. 2. The scaling relation between the interface lengthL and
the domain~Fig. 1! areaA during the process of phase orderin
Equations~3! and~4! are given by the dashed lines. On this plot w
have put the results obtained for about 330 000 domains and t
different times (t5400,500,1100). The master curve consists
two straight lines@Eqs.~3! and~4!#, indicating two types of domain
in the system.
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From the maximization ofS(t) @Eq. ~5!# subject to the
constraint~6! we find

p~A,t !5C~ t !exp@2l~ t !~A/L !m#. ~7!

Using the scaling principle we find the distribution in th
rescaled form

p~x!5C* exp@2l* ~x/y!m#, ~8!

wherex5A/Aav(t), y5L/Lav(t), C* and l* are constants
independent of time, andm52. Equation~8! is satisfied in
the late stage regime as shown in Fig. 3, where the distr
tion p(x) obtained from the simulations is plotted. This giv
a strong support to the application of maximum entropy pr
ciple to the kinetics of the phase transition. Other distrib
tions such asp1(L,t) can be obtained fromp(A,t) by a
change of variables, i.e.,p1(L,t)5p„A(L),t…dA(L)/dL. We
note that the choice of the distribution in Eq.~5! is not

FIG. 4. Image of broken glass~a fragment! with a characteristic
crack pattern.

FIG. 3. The distribution function for the domain area in the la
stage regime of the kinetics of a 2D system. It is shown in
scaled formp(A,t);exp@2a(x/y)m# with m52x5A/Aav(t) and y
5L/Lav(t) for three different times~see Fig. 2!. Equation~8! is
represented by the solid line. This fit strongly supports the M
conjecture with the entropyp(A,t) @Eq. ~5!#. The distribution was
obtained for about 330 000 domains.
05710
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trivial. For example, a possible choice ofp1(L,t) in Eq. ~5!
would lead to disagreement with our computer simulation

The analysis presented here for the kinetics of phase t
sitions leads additionally to the definition of the 2D morpho
ogy class which can be characterized by two expone
~m,n!. Equations~5! and ~6! form the basis of the genera
principle which governs the form of the distribution functio
while Eqs.~3! and ~4! are characteristic for a given system
There are other systems that belong to this class. One is
crack pattern in broken glass, discussed below, and anoth
the parcel division in towns mentioned in the conclusio
We are not aware of previous studies of these systems.

Crack pattern in a broken glass. The size of the hardene
glass used in our experiment was approximately 1 m2. The
glass was broken and a crack pattern emerged~Fig. 4!. The
experiment was repeated with many samples of glass and
the morphological analysis we have used about 104 pieces of
broken glass. In order to measure the area and boun
length of the glass pieces we put the broken glass on a tr
parency projector and made a photo of its image on a w
Next we put the photo on a HP scanner and made an im
in JPG format. Later, it was converted into a PPM form
such that it allowed us to make a full analysis of the doma
formed in this crack pattern. In Fig. 5 we showy5L/Lav
versusx5A/Aav and find the same algebraic relation as
Eq. ~3! with n50.7260.02. The area distributionp(A) is
obtained from the MEP principle with the constraint~6!. We

FIG. 5. The scaling relation between the contour lengthL of the
domain boundaries and the areaA for the crack pattern in broken
glass~Fig. 4!. Equation~3! with n50.72 is given by the solid line.

FIG. 6. The distribution function for the domain area in th
crack pattern shown in Fig. 4. We findp(A);exp@2b(x/y)m# (m
51) and sincey;xn for all pieces of glass withn50.72 we plot
p(A) in the rescaled form exp(2bx12n).
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BRIEF REPORTS PHYSICAL REVIEW E 65 057105
find p(A) for a broken glass pattern in the form of Eq.~8!
with m51. Condition ~6! with m51 expresses simply th
fact that the characteristic domain sizeRchar of the crack
pattern is fixed. Since the exponentn in the relationy;xn is
independent of the domain size, we havep(A)5p(x)
;exp@2b(x/y)m#;exp(2bx12n). In Fig. 6 we show the area
distribution plotted as a function ofx12n. This analysis
shows that the crack pattern in broken glass belongs to
same morphology class as the domain pattern in a 2D sys
undergoing phase ordering.

Conclusions. Analysis based on the morphology of th
system allows a detailed study of the kinetics of phase tr
sitions. The phase transition as observed in time should
low a kinetic pathway in the direction of reduced dissipatio
The maximum entropy principle is applicable to the analy
v.

an
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of 2D system morphology in phase ordering kinetics and
two exponentsn andm can be used for its quantitative cha
acterization. For systems undergoing phase transitions
constraint is imposed on the characteristic time of evolut
and therefore the exponentm should follow from the relation
between the domain size and time. Unfortunately, not all
patterns follow such characterization. The soap froth sho
different distribution ofp(A) since there are strong con
straints imposed on their domain shape~e.g., a linear relation
between the surface area and the number of sides of the
@5#!, which do not apply in the cases studied here.
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